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THE SOLUTIONOF RADIATION TRANSPORTEQUATIONSWITH ADAPTIVE
FINITE ELEMENTS*

LINDASTALSl

Abstract.W_comparetheperformanceofaninexactNewton-multigridmethodandFullApproximation
Storagemultigridwhensolvingradiationtransportequations.Wealsopresentanadaptiverefinement
algorithmandexploreits impactonthesolutionofsuchequations.

Key words.FAS,multigrid,Newtonmethod,radiationtransport

Subjectclassification.ComputerScience

1. Introduction. Interestin thesolutionof radiationtransportequationsstemsfl'omthemodeling
ofapplicationsfoundin, forexample,combustion,astrophysicsandlaserfusion.However,featuressuchas
strongnonlinearitiesandlargejumpsin thecoefficientsmakestheseequationsdifficultto solveandthey
canconsumealot ofcomputationalresourcesif efficientsolutiontechniquesarenotused.Twoexamples
ofefficientsolutionmethodsaretheinexactNewton-multigridmethodandtheFullApproximationStorage
multigrid(FAS);bothofwhicharenonlinearmultigridtechniques.

Thesolutionofradiationtransportequationsusuallyhasawavefl'ont.Adaptivelyrefinedgridsarewell
suitedto capturetheinformationalongthefrontandthusgivehighresolutionresults.

In thispaperwecomparetheperformanceofaninexactNewton-multigridmethodandtheFASmethod
for thesolutionof time-dependentradiationtransportequations.Wealsoexploretheuseof adaptive
refinementtechniques.

2. PhysicalModel. Undercertainassumptions,suchasisotropicradiation,opticallythickmaterial
andtemperatureequilibrium,radiationtransportmaybemodeledbytheequation:

(2.1) cOEot V.(D(E)VE) : 0 on a × I,

where E is the radiation energy.

More physically meaningful models of radiation transport are represented by systems of equations like

those described in [4, 12, 14]; however, Equation (2.1) contains many of the features seen in the more general

system, such as strong nonlinearities and large jumps in the coefficients, and therefore is a good place to

start our investigation into different solution techniques.

One definition of the diffusivity term, D(E), is:

(2.2) D(z) : Dl(Z) : z_z 9,

with o_ < 0, 0 </3 < 1. Typically o_ is taken to be -1 or -3 while/3 is taken to be 1/4 or 3/4. Z is the atomic

mass number and may vary within the domain to reflect inhomogeneities in the material. The constant /3

controls the strength of the nonlinearity while _ affects the size of the jumps in the coefficients.

*This research was supported by the U.S. Department of Energy under the ASCI ASAP program (subcontract B347882

from the Lawrence Livermore National Laboratory) and by the National Aeronautics and Space Administration under NASA

Contract No. NAS1-97046 while the author was in residence at ICASE, NASA Langley Research Center, Hampton, Virginia

23681-2199, USA.

IDepartment of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, USA and ICASE, NASA Langley

Res. Ctr, Hampton, VA 23681-2199, USA.
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FIG. 9.1. The values ]'or the atomic mass number Z depend on the topology of the material. In our model problem, we

define Z as shown above.

The definition of D(E) given in Equation (2.2) may produce results that show the energy moving through

the system at a rate faster than the speed of light. Consequently a flux limiter is included to slow down the

movement and the diffusivity term is rewritten as:

The domain, ft, is a square domain ([0, 1] x [0, 1]) with the following mixture of Newton and Neumann

boundary conditions;

cgE/Or_ = 0 on , N X I,

nTD(E)VE + E/2 = 2 on , f0 x I,

nTD(E)VE + E/2 = 0 on , F1 x I,

where , N represents the lines y = 0 and y = 1, , F0 is the line x = 0 and , F1 is the line x = 1, n is the

outward unit norrnal and I is the time interval.

In our model problem we take Z to be 10.0 except in the following regions: x/(x - 0.5) .) + (y - 0.5) .) _<

0.125, y _< 0.5 - x and y _> 1.75 - x where Z = 100, Z = 20 and Z = 50 respectively. See Figure 2.1.

Additional papers that look at these equations include [3, 4, 5, 7, 12, 16] and their accompanying

references. The radiation transport model described here is very similar to that presented in [7, 12, 16],

except that we use the finite element method instead of the finite difference method, as this more readily

allows the use of adaptive refinement.

3. Diseretization. To solve Equation (2.1), we use the following variational formulation, similar to

that given in [6]: Find "u(t) C V = H_(ft), t E I, such that

(it(t), v)a + a(D(u(t)); u(t),v)u =< g, v >ou Vv E V,(3.1)

where

£ /i w /ia(D(u); v, w)_ = D(_u)VvVw dx + _- dec"+ _- dec',
F 0 F1

< v,w >Of_: vwdx



and

0 On_NX/,
9 = 2 on F0 X I,

0 on F1 X I.

The time derivative is dealt with through the use of either an implicit Euler or the Crank-Nicolson

method.

4. Node-Edge Data Structure. A node-edge data structure similar to the one described in [15, 17,

18, 20] is used to store the finite element grid. In this data structure, a grid ;_4 "_ is defined in terms of its

geometrical, topological and algebraic attributes. The geometrical and topological attributes are simply the

set of nodes, _'m, and edges, g_. The stiffness matrix is associated with the algebraic attribute and is stored

in the set of connections, C__, as a graph.

The node-edge data structure does not eo_plieitly contain any information about the elements in the grid.

Consequently, the same data structure can be used to store triangular, quadrilateral or tetrahedral grids.

Information about the elements may be extracted by looping through the nodes and edges if necessary. The

advantage of such a data structure is its flexibility. Although we concentrate on serial results in this paper,

the code has been implemented in parallel and those results will be presented in a future paper.

We use a refinement algorithm to build the sequence of coarse grids needed by our solution techniques

(nonlinear multigrid methods). That is, the new, refined grid becomes the fine grid in the multigrid algorithm

and the old grid(s) is kept as the coarse grid(s). In terms of the notation defined above, this nested sequence

of grids is represented by _41 C 342 C ... C .AA'L A more thorough description of this refinement algorithm

is given in Section 6.

Information is moved from the coarse grid ._,_-1 to the fine grid 34 "_ by the linear interpolation matrix

I;__1. The restriction matrix I;_ -1 is defined to be the transpose of the interpolation matrix and moves the

information from the fine grid ;t4 m to the coarse grid 34 _-1. This extra algebraic information is stored in

the table of connections. That is, if C}_, Ca_ and C__ hold the interpolation, restriction and stiffness matrices,

respectively, then the algebraic information for a multigrid grid is the set of connections, C", where

c = G' u c? u c;L

for 1 < < c* = G u c1 and C = u Ca.
Finally, the grid ;_4"_ is given by ._'_ = {N "_, gm,C,_}.

5. Solution Techniques. We compare two different solution techniques: the inexact Newton-multigrid

method and the Full Approximation Storage multigrid (FAS). Note that Newton's method relies on a global

linearization sweep whereas the FAS scheme uses local linearizations.

5.1. Inexact Newton-Multigrid. Our implementation is a standard implementation of Newton's

method, but we have included a brief description below to aid our discussion of the numerical results.

Suppose we want to solve the nonlinear system Nix] = b where N is a nonlinear operator. Let Fix] =

b - N[x] and take an initial guess x0. A high level algorithm for the inexact Newton-multigrid method is;

While [F[xk][ > a given tolerance

Calculate the 3acobian F'(xk)

Move the 3acobian down the grid levels

Solve the linear system F'(xk)y = -F[x_] by using the multigrid method



Findthescalingfactor7
Setxk+l= 7Y+ xk

Themethodisinexactbecausethelinearsystemisnotsolvedexactly;wejust requirethat

IIF[xk] + F'(xk)Yll < IIF[xk]ll/10.

The scaling factor is defined as

1

"y = rain {1, 1/11cl 12}_,

where ei = yi/(Xk)i. It is necessary to include a scaling factor, particularly when solving the time-dependent

problems, as the solution changes rapidly near wave fronts. This is similar to the scaling factor defined in

[16].

When using the multigrid algorithm to solve a linear system A'_y = f'_ defined on a fine grid, we need

to 'move' the system down to the coarse grids. One way of doing this is to set

(5.1) Am-1 ..... 1 ....= I,, A I,z_l,

where A m (1 < m <_ n) is the matrix defined on the grid ._4"_, and I;_ -s and I;__s are the interpolation

and restriction matrices introduced in Section 4. The 'Move the Jacobian down the grid levels' line in the

above algorithm means that we define the coarse grid matrices in this way.

5.2. FAS Scheme. A high level algorithnl of the FAS schenle is given below. A more thorough

description can be found in, for example, [1, 2, 8].

While IF[xk]l > a given tolerance

Apply a nonlinear smoother/_1 times to the system N mix "_] = b m

If not at coarsest grid

Compute the defect d "_ = b "_ - N'_[x m]

Restrict the defect d,_-s = Imm-ld"

Restrict the current approximation x "_-1 = II_-lx "_

Compute the approximation to

Nm-Z[y m-l] = din-1 + Nm-l[x ''-1]

by calling the FAS Scheme again using x "_-1 as an initial guess

Calculate the correction _,_-s = ym-1 _ xm-1

Interpolate the correction _,,_ = i.__lX._.__r_-i

Correct the current approximation x "_ = x _ + _'_

Apply a nonlinear smoother 1_2 times to the system N m[x '_] = b m

Notice that the Jacobian matrix is not formed, so the FAS scheme requires less storage than Newton's

method.
_m -- 1 m -- 1

The matrix I m is a restriction operator, but not necessarily the same as I,,_ . In this work we used

injection for the operation.

The results presented in this paper were obtained by using a nonlinear SOR method [la] as a smoother.

The linearization phase is incorporated in the smoother by applying a point-Newton method to a given grid

node after 'fixing' the value at all of the other nodes. To apply the point Newton method, the diffusivity

term (and its derivative) must be evaluated, which is expensive.



6. Grid Refinement. The refinement algorithm is based on the newest node bisection method. In this

method, the triangles are subdivided by bisecting the edges that sit opposite the newest nodes. For example,

if the dark points in Figure 6.1 are the newest nodes, then the resulting grid after one and two refinement

sweeps are shown in Figure 6.2.

7 8 9

1 2 3
FIG. 6.1. Example grid that may be stored in the node-edge data structure.

FIG. 6.2. Resulting grid after two non-adaptive refinement sweeps of the grid in Figure 6.1. Note that the edges have been

bisected along the base edges marked by a B.

In terms of the node-edge data structure, it is easier to work with the base edges rather then the newest

nodes, where the base edges are the edges that sit opposite the newest nodes, such as those marked by B in

Figure 6.1.

FIG. 6.3. Result after bisecting the grid in Figure 6.1 along one of the base edges.

6.1. Controlling the Order of Refinement. The most difficult part of the adaptive refinement

routine is ensuring that the edges are bisected in the correct order to avoid long thin triangles. For example,

suppose a triangle in Figure 6.1 is refined along one of the base edges as shown in Figure 6.3; then several

of the triangles in the resulting grid will have two base edges. If the edges B1 and B2 are bisected during

the next refinement sweep, then it is not clear which base edge should be bisected first. If the wrong edge is

chosen, as in Figure 6.4, we get long thin triangles which reduce the efficiency of the grid.

To determine the order in which to bisect the edges, we use a method similar to Mitchell's Compatibly

Divisible Triangles [9, 10, 11].

We define an interface-base edge to be an edge that sits between two different levels of refinement. For

example, in Figure 6.5, we have redrawn the grid from Figure 6.3 and marked the interface-base edges by



FIG.6.4.If the wrong edge (B1) is bisected first, then the triangles can become long and thin.

FIG. 6.5. The interface-base edges marked by I sit between two different levels of refinement. Once an interface-base edge

has been updated to a base edge, it may be bisected.

an I. The neighboring coarse triangles must be refined before the interface-base edges are bisected. So B3 in

Figure 6.5 must be bisected before/1. Note that it may be necessary to refine nlore then one neighboring

triangle. For example, to bisect edge Ilt in Figure 6.5, edges B4 and Is should be bisected first.

6.2. Error Indicator (Stationary Problem). The idea behind our error indicator is to determine if

the addition of a new node will significantly reduce the error.

Let v "_ be the current approximation to the system of equations N" [u "] = b ", where N " and b "_ are

the stiffness matrix and load vector defined on the current grid, A4 m. Then, each base edge and interface-

base edge is assigned an error indicator which is equal to a weighted residual calculated at its midpoint.

That is, if node i is the midpoint of an edge then the error indicator e " assigned to that edge is:

m+l
r i

(6.1) c m =
N'_+I [I;_+1 v,_ ] '

i,i

where

rm+ 1 = bin+ 1 _ N'_+l[I;_+lv'_].

N m+l and b "_+1 are the resulting stiffness matrix and load vector that would result if the edge was

bisected at node i to form a new set of triangles. Note that it is not necessary to construct the whole

stiffness matrix (or load vector); we only need the row corresponding to node i.

The motivation behind the error indicator is the question: how much will the error be reduced if we

add node i? In regions of the domain where the solution is well approximated by the coarse grid we would

expect the residual r "_+1 to be small; in other regions where the solution is rapidly changing, and not well

approximated by the coarse grid, the residual will be large. We divide by m+l ,_+1 ,_Ni, i [Im v ] to normalize the

residual.

This error indicator is similar to the error indicator described by Mitchell [9, 10, 11], R/ide [15] or Villegas

[21].



6.3. Moving Grids. When modeling non-stationary problems it is advantageous to adjust the shape

of the grid to match the movement of the wave front.

One approach to building such grids is to first de-refine the grid and then re-refine it to take the movement

of the wave front into account. By noting that we store a sequence of nested grids, not just a single FEM

grid, we are able to implement a very cheap de-refinement procedure. We simply shuffle the grid up one

level, i.e. set _4 m to _4 m-1 where .44"_ is the de-refined grid. The interpolation and restriction information

at the coarsest and finest grids has to be updated, but otherwise this is a simple copy. Once all of the levels

have been updated, we can apply the refinement algorithm described above.

6.4. Error Indicator (Non-Stationary Problem). The next issue is how to calculate the error

indicator when taking the time derivative into account. To calculate the indicator at the next time-step, we

need an approximation of the solution at that tilne-step. Applying an implicit algorithm to approximate the

solution is cost-prohibitive, so we use an explicit method instead (we only use an explicit method to find the

error indicator; once the grid has been refined, we use an implicit method to calculate the solution). Recall

that the explicit Euler method is

M-_v -_ = M-_v -_ + At(b m - Nm[v'q),

where M _' is the mass matrix, v '' is the solution at the current time-step, v "_ is the solution at the next

time-step and At is the step size. Based on this equation we then define the error indicator for non-stationary

problems to be:

(6.2) em - r_'+s
m+l]l/4'
i,i ]

rm+l = gm+l _ Mm+llm+lvm

gm+l = i;z+l (Mmv m + At(b m _ Nm[vm]))

Note that this indicator only needs to evaluate N once on the original de-refined grid, to form the

right-hand-side, and is thus a lot cheaper than the indicator used for the stationary problem.

Figures 6.6, 6.7 and 6.8 show examples of the moving grid. To obtain these examples we set a = -1,

/3 = 1/4. The values of Z are as given in Figure 2.1 and D(E) = Ds(E). The step size is 0.5/32, and the

figures show the results at time step 10, 20 and 30 respectively. There is an increase in the number of nodes

over time, however this is consistent with the shape of the solution. The indicator should pick up the regions

where the solution is changing rapidly, which it does.

7. Results. We ran all of the test problems on a Beowulf cluster consisting of 400 MHz Pentiuln II

processors with 384 MB of 100 MHz RAM. There are 32 such CPU nodes available in the cluster. Further

particulars of this machine can be found at http://www, icase, edu/.

7.1. Solution of Stationary Problem. To better understand the behavior of the two nonlinear

multigrid methods we firstly considered the stationary problem.

7.1.1. Test Problems. We looked at four different test problems, low, low J, high and high J.

In the first two examples, low and low J, we set c_ = -1 and/3 = 1/4. The difference between the two

examples is in the definition of the atomic mass number Z. In low Z is fixed at 10 throughout the whole

domain, but in low J the values for Z vary as shown in Figure 2.1. Figure 7.1 gives example solutions of

low and low J.
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FIG. 6.6. Example grid at time step 10, contains 2868 nodes.

0 01 02 03 04 05 06 07 08 09 1

FIG. 6.7. Example grid at time step 20, contains 4390 nodes.

The other two examples, high and high J, are much more difficult to solve. In this case the nonlinearity

and jump size were increased to a = -3 and/3 = 3/4. Once again, Z is fixed at 10 for high, but is spatially

dependent for high J. Figure 7.2 shows example solutions of high and high J.

In all of the test problems the flux limiter was included in the definition of the diffusivity term as shown

in Equation (2.3).

7.1.2. Newton's method. Let us firstly look at the results for Newton's method, which are given in

Tables 7.1 and 7.2.

The timing results have been broken down into the total time, tittle required to solve the nonlinear

system using Newton's method, the time spent solving the linearized system with the aid of the V-scheme

and the tittle needed to build the nested sequence of grids.

Before adding a new grid level, _4 m, the problem was solved on the coarse grid j_4 m-1 and the result

was interpolated up as an initial guess on .M "_. The tittles given in the tables are the accumulated time over

all of the grid levels (i.e. not just the time to solve the problem on the finest grid).

The number of iterations, labeled as 'No. It.', is the number of iterations required to solve the problem

on the finest grid level. The iterations were terminated when the residual F[xk] was less than 10 -5 or the

number of iterations reached a maximum of 10. Typically the method did not converge within 10 iterations

on the coarser grids, but we overlooked this as the coarse grids are only used to give an initial guess to the

fine grid solution. The method did not converge on the finest grid for test problem high J when uniform

grid refinement was used.
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FIG. 6.8. Example grid at time step 30, contains 5602 nodes.
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FIG. 7.1. Example solutions of the test oroblerns low and low J respectively.

One of the difficulties in solving this particular problem is that Newton's method tries to 'push' the

solution down below zero, but we can not pass negative energy values into the diffusivity functions, D1 (E)

or D2(E). To avoid the negative values we limit how small the energy may become, but this slows down or

halts the convergence rate of Newton's method on the coarser grids.

Two pre-smoothers and two post-smoothers were used in the V-scheme solver. The convergence rate for

the solver was close to 0.5 for all of the test problems.

Six levels of uniformly refined grids were used to obtain the results presented in Table 7.1. The number

of nodes on the finest grid was 66049.

Five levels of adaptively refined grids form the basis of the results given in Table 7.2. The number of

nodes on the finest grid level ranges from 17043 to 50785; which is an artifact of the refinement routine.

Refinement continues on each grid level until the error indicator has been reduced by a factor of four, which

does not necessarily imply that the number of nodes increases by a factor of four from one grid level to the

next. The time required to build these grids is a lot higher then we would like, mainly due to the cost of

calculating the error indicator, Equation (6.1). As discussed in the following section, calculations involving

the diffusivity term D(E) are expensive.

In Table 7.1 we see that Newton's method slows down as the strength of the nonlinearity is increased,

as expected. The relatively small coefficient jumps seen in low J have little effect, but the method struggled

as the jump size was increased.

The results displayed in Table 7.2 are a little more erratic. The adaptive refinement aided the solution

method when there was a strong nonlinearity. The timings reported for high are low because the coarse

grids were fine enough to capture the shape of the solution, and consequently the initial guess interpolated

up to the fine grid was well within the ball of convergence.
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FIG. 7.2. Example solutions of the test problems high and high J respectively.

TABLE 7.1

Solution time, in seconds, when solving the test problems using Newton's method on an uniformly 7_Jined grid.

low low J high high J

No. Nodes 66049 66049 66049 66049

No. It. 3 3 6 *

Total Time 164.7 143.5 412.7 646.1

New_on 138.7 117.5 386.9 620.2

V-scheme 44.2 24.3 135.9 237.1

Grid Refine 12.2 12.2 12.1 12.2

7.1.3. FAS. Tables 7.3 and 7.4 give the tittfing results when the FAS scheme was used. Much of the

discussion given in Section 7.1.2 on how the tittfing results were obtained also applies here.

The results labeled 'Nonlin. SOR' show the amount of tittle spent in the nonlinear SOR routine. Two pre-

smoothers and two pos_-smoothers were used for low and low J, four pre-smoother and four post-smoothers

were used for high and high a. A weight of 0.8 was set in the nonlinear SOR method. The maximum

number of FAS iterations allowed on each level was 6.

The FAS Scheme did not converge for high a when either uniform or adaptive refinement was used. We

have not investigated this further yet because the non-stationary problem is our main focus.

The times for the FAS scheme are slower than Newton's method, except for high with uniform refinement.

This does not mean that the FAS scheme 'performed poorly' in fact it had a convergence rate of 0.5, similar

to the linear solve in Newton's method. We also measured the number of times each node was updated during

the pre-smoothing and post-smoothing stages, for uniformly refined grids, and found that the FAS scheme

had fewer or equal number of updates compared to Newton's method. The main reason why FAS is slower

is because of the high cost of calculating the effect of the diffusivky term, and ks derivative. Every time the

value of a given node is changed, a(D(u); v, w) has to be reevaluated; which involves a search through the

data structure to find the appropriate triangles, the formulation of the basis functions and the evaluation of

the integral. In Newton's method we only have to evaluate the term once for each node on the finest grid

level to form the Jacobian, but with the FAS scheme it is necessary to evaluate the term several _irnes for

each node on each grid level.

7.2. Non-Stationary. The Crank-Nieolson method was used in all of the test runs.

7.2.1. Uniform v's Adaptive. To determine if the use of adaptive refinement influences the behavior

of the solution we looked at the solution obtained on a uniformly refined grid and compared it with one

obtained on an adaptively refined grid. The flux limiter was included in the diffusivity term and _ = -3

10



TABLE 7.2

Solution time, in seconds, when solving the test problems using

low low J

No. Nodes 41682 24737

No. It. 3 3

Total Time 156.8 106.3

Newton 105.4 68.2

V-scheme 36.9 24.5

Grid Refine 42.2 32.6

TABLE 7.3

Newton's method on an adaptively refined grid.

high high J

50785 17043

1 8

74.2 125.2

17.4 105.1

0.93 24.5

45.7 16.6

Solution time, in seconds, when solving the test problems using the FAS scheme on an uniformly refined grid.

low low J high high J

No. Nodes 66049 66049 66049 66049

No. It. 2 2 1 *

Total Time 310.6 318.6 318.4 *

FAS 284.7 292.3 292.7 *

Nonlin. SOR 222.1 228.0 252.3 *

Grid Refine 12.1 12.1 12.1 *

and f3 = 3/4. Figures 7.3 and 7.4 show the results at t = 0.05 with time steps At = 0.1/32. The atomic

mass number Z was fixed at 10, meaning that the solution is homogeneous along the y-axis (see for example

the solution of low and high given in Figures 7.1 and 7.2). The graphs shown in Figures 7.3 and 7.4 are a

slice taken along the y = 0 plane.

As stated in [16], when the flux limiter is included the problem changes from being locally parabolic to

locally hyperbolic and thus becomes more difficult to solve. This property is reflected in the graph shown

in Figure 7.3 where we see a small oscillation near the left boundary. By using adaptive refinement we are

able to decrease the grid size near that boundary and thus remove the oscillation.

......... i............................................................ i.............................

14 ........ i .............................................................................................

12 .........

iiiiiiiZiiiilZililZiliZiiiiZiiiiZiiiiZiiiiilZililZil
06 : ....... -

04

O2 • .................................................................................................

' ' '_ I ' I ' I '005 01 0 5 02 025 03 035 04 045 05
x coordinate

FIG. 7.3. Example solutions of the test problems low and low J respectively.

7.2.2. Jump Size and Non-Stationary Solutions. We now look at how the jump size affects the

movement of the energy wave. We used the inexact Newton-multigrid method to solve the problem.
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TABLE 7.4

Solution time, in seconds, when solving the test problems using FAS scheme on an adaptively refined grid

low low J high high J

No. Nodes 32729 25690 50682 *

No. It. 1 3 1 *

Total Time 150.3 234.5 218.2 *

FAS 106.9 196.2 161.9 *

Nonlin. SOR 82.9 151.9 138.1 *

Grid Refine 36.0 32.4 45.6 *

0 005 01 015 02 025 03 035 04 045 05
x coordinate

PIG. 7.4. Example solutions of the test problems low and low J respectively.

In the first example a = -2 and/3 = 3/4. The values of Z are as given in Figure 2.1 and a flux limiter

was used. We took time steps of size 3/64 and the results in Figures 7.5 and 7.6 show the energy at time

steps 32 and 64 respectively. The nonlinear iterations were terminated when the residual was less than 10 -6 .

The examples took 13202 seconds to run.

Recall that the atomic mass number in the lower left corner of the domain is higher than that in the

upper left corner. We can clearly see how this influences the movement of the wave front.

0 01 02 03 04 05 06 07 08 09 1 9FIG. 7.5. Example solution at time step 32 with c_ - .

In the next set of examples we set a = -3 and/3 = 3/4. All of the other parameters are the same as

those given above. The results in Figures 7.7 and 7.8 show the energy at time steps 32 and 64 respectively.

It took a total of 3520 seconds to solve the problem, with approximately 89% of that time spent in the

12



0 01 02 03 04 05 06 07 08 09

FIG. 7.6. Example solution at time step 65 with c_ -2.

nonlinear solver and 7% spent in the adaptive refinement routine. The number of nodes on the finest grid

level varied fi'om about 2500 to 5500.

These graphs show how an increase in the mass number slows down the movement of the wave fl'ont.

0 01 02 03 04 05 06 07 08 09

FIo. 7.7. Example solution at time step 32 with c_ -3.

0 01 02 03 04 05 06 07 08 09

FIG. 7.8. Example solution at time step 63 with c_ -3.

8. Conclusion. The inexact Newton-multigrid method is faster than the FAS scheme when solving

radiation transport equations. Note however, we only presented serial results in this report and our initial

study into the parallel performance suggests that the FAS scheme scales better.

Adaptive refinement helps to capture the information along the wave front.
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9. Future Work. Both of the solvers have difficulty converging during the first few tittle steps, thus

we like to investigate some adaptive time-stepping techniques.

We would also like to study the parallel scalability of the solvers.
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